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ABSTRACT

Image de-raining is a critical task in computer vision
to improve visibility and enhance the robustness of outdoor
vision systems. While recent advances in de-raining meth-
ods have achieved remarkable performance, the challenge
remains to produce high-quality and visually pleasing de-
rained results. In this paper, we present a reference-guided
de-raining filter, a transformer network that enhances de-
raining results using a reference clean image as guidance. We
leverage the capabilities of the proposed module to further
refine the images de-rained by existing methods. We vali-
date our method on three datasets and show that our module
can improve the performance of existing prior-based, CNN-
based, and transformer-based approaches.
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1. INTRODUCTION

Image de-raining is an essential task in computer vision as
rain streaks can decrease visibility and deteriorate the ro-
bustness of most outdoor vision systems. De-raining has
been widely applied in a wide range of practical applica-
tions, including autonomous driving [1, 2] and surveillance
systems [3, 4], as an essential pre-processing step.

Early approaches that solve the task with hand-crafted pri-
ors such as sparse coding [5] and Gaussian mixture model [6]
are formulated to explicitly model the physical characteristics
of rain streaks. However, they often fail under complex rain
conditions and show over-smoothed images [7]. The advent
of Convolutional Neural Networks (CNNs) has led to substan-
tial advances in single image de-raining [8, 9, 10, 11, 12, 13].
CNNs, however, have limited receptive fields, which means
that the pixel value estimation for each spatial location pri-
marily depends on small local surroundings. Therefore, due
to the limited capacity for modeling long-range spatial con-
text [14], CNN-based methods often struggle with accurately
detecting heavy rain streaks, leading to blurred results [15].
Transformer-based methods [16, 17, 18, 19, 20] have emerged
as a promising alternative as they can better capture non-local
information, enhancing image reconstruction quality. How-
ever, these approaches do not model local image details well,
which are crucial for achieving clear image restoration [19].
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Fig. 1. Sample de-rained images from Cityscapes-Rain [21].
Unlike existing methods, our reference-guided de-raining fil-
ter enhances the de-rained results using a reference clean im-
age as guidance.

This limitation arises from the self-attention mechanism in
Transformers, which does not adequately handle the local in-
variant properties, in contrast to CNNs. While single image
de-raining methods have made significant progress, there re-
mains room for improvement in their ability to handle diverse
and challenging rain conditions.1

In this paper, we propose a novel framework for image de-
raining. We use existing de-raining models as baselines and
present a reference-guided de-raining filter that extracts use-
ful feature information from a reference clean image to com-
pensate for the baseline results. The key insight is to transfer
useful features from a reference clean image. Our framework
consists of a feature extractor, a feature attention module, and
a feature fusion module. Given a rainy image and a reference
rainy image as input, we first estimate the de-rained images

1More results and the code: http://ziiihooo.com/blog/2024/
derain/

http://ziiihooo.com/blog/2024/derain/
http://ziiihooo.com/blog/2024/derain/


Fig. 2. Overview of our framework. We first obtain a input rainy image, Xr, and a synthesized reference rainy image, Rr.
Using an existing de-raining model, we obtain the input de-rained image, X̂c, and the reference de-rained image, R̂c. These two
de-rained images and the reference clean image, Rc are used as input to our reference-guided de-raining filter. By capturing the
useful information from the features from Rc, and transferring it to X̂c, we can generate the enhanced de-raining output, X̂out

c .

using an existing de-raining model. We use these results with
a reference clean image as input for the feature extractor that
extracts the multi-scale features of each image. The feature
attention module uses these features as input to estimate use-
ful features from a reference rain/clean image. At this point,
the feature attention module computes the most relevant fea-
ture patch from the reference clean image. Finally, we intro-
duce the feature fusion module to aggregate multi-scale fea-
tures.

We summarize our main contributions as follows:

• We propose a novel framework to integrate existing de-
raining methods into a reference-guided de-raining filter
that captures useful features by leveraging reference im-
ages.

• Our method can be used with a wide range of existing
methods in a plug-and-play manner.

• Experimental results show that our method improves the
performance of existing methods, from a prior-based to
a state-of-the-art method.

2. PROBLEM FORMULATION

Given an input rainy image Xr, existing learning-based sin-
gle image de-raining methods aim to learn a model fθS (·),
parameterized by θS , that can generate an estimated clean im-
age X̂c = fθS (Xr) in which the rain streaks are removed.
The model fθS (Xr) is learned by minimizing the error be-
tween X̂c and the ground-truth clean image Xgt

c using a loss
function L as:

argmin
θS

L(fθS (Xr), X
gt
c ). (1)

In this paper, we propose to further employ a reference
clean image Rc as guidance to improve the result of exist-
ing de-raining models and generate the enhancement output
X̂out

c . We present a model gθR(·), parameterized by θR, that
aims to extract useful feature information from Rc to compen-
sate for X̂c, resulting in the final enhancement output X̂out

c =
gθR(X̂c, Rc). Namely, our model learns to minimize the fol-
lowing loss function:

argmin
θR

L(gθR(X̂c, Rc), X
gt
c ). (2)

3. METHOD

Figure 2 shows the overview of our framework. The proposed
reference-guided de-raining filter (RDF), gθR(·), is designed
to extract useful feature information from Rc to compensate
for X̂c obtained from an existing baseline model. Given X̂c,
we first perform image retrieval to find Rc from an image
database. We then obtain the synthesized rainy image Rr by
synthesizing the rain streaks to Rc [22]. By using Rr as in-
put to the baseline model, we can estimate the reference de-
rained image R̂c. By capturing the similarity between the two
de-rained images, X̂c and R̂c, RDF aims to transfer the useful
information from a reference clean image Rc to X̂c, generat-
ing the enhancement output X̂out

c .
RDF mainly consists of three components: feature extrac-

tor, feature attention and feature fusion. The feature extrac-
tor first projects the images X̂c, R̂c, and Rc into the features
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Fig. 3. Attention maps from the feature attention module.
Using the feature of a input de-rained image, X̂c, as a query,
and the feature of a reference de-rained image, R̂c, as a key,
we compute attention weights that are utilized to select the
useful features from the reference image. The attention maps
are color-coded, where warmer colors indicate higher values.

PX̂c
, PR̂c

, and PRc , respectively. The feature attention mod-
ule firstly computes the attention weights taking PX̂c

as query
(Q) and PR̂c

as key (K). Attention embedding module out-
puts the highest relevance as soft attention maps S at patch
level and indexes corresponding to highest relevance at patch
level as hard attention maps H . In the hard attention mod-
ule, H is further used to select the most relevant patch from
the paired value (V), PRc

, estimating the feature P , the use-
ful feature extracted from the reference clean image. In the
feature fusion module, P is re-weighted at the patch level us-
ing the soft attention maps S. The re-weighted feature is then
integrated with the de-rained image through the Cross-Scale
Feature Integration (CSFI) stage. Finally, the fused feature is
back-projected into the image space to produce the enhance-
ment output X̂out

c .

3.1. Feature extractor

The feature extractor module, including several convolu-
tion blocks, is designed to project images into a feature
space. Specifically, the feature extractor maps a single im-
age into three distinct feature levels. The Level-1 feature,
P 1
{·} ∈ R(B,C,H,W ), preserves the input image size but with

a higher-dimensional channel space C. The Level-2 and
Level-3 features are represented at lower resolutions and in-
creased channel dimensions, specifically denoted as P 2

{·} ∈
R(B,2C,H/2,W/2) and P 3

{·} ∈ R(B,4C,H/4,W/4), respectively.

In this context, the feature P{·} ≜ {P 1
{·}, P

2
{·}, P

3
{·}} aggre-

gates these three-level features extracted from an input of the
feature extractor.

Fig. 4. Feature fusion module. The de-rained images are first
projected into the feature space using a shallow feature ex-
tractor. The features at each level are then compensated se-
quentially from level 1 (fine-level) to Level 3 (coarse-level).

3.2. Feature attention

The feature attention module receives three different features,
PX̂c

, PRc
, and PR̂c

. This module maps the query PX̂c
to

useful feature patches in the context of the key PR̂c
and value

PRc , subsequently outputting the useful features P along with
the corresponding relevance maps at the patch level. During
the attention embedding stage, only the Level-3 features P 3

X̂c

and P 3
R̂c

are utilized to compute relevance for patches, as they
encapsulate more abstract information and a wider receptive
field. Following this, the hard attention module selects the
most relevant feature patch of PRc

for the patches of PX̂c
,

using the relevance just computed at every feature level. In
Figure 3, we visualize the attention maps, where we could
see that similar areas are highly noticed, which are used to
compensate for de-rain results later.

3.3. Feature fusion

In Figure 4. the CSFI module represents a well-established
method for blending features with various scales [23, 24]. In
this paper, we leverage this approach to fuse P , the useful fea-
tures extracted from the reference, with the original de-rained
image. The useful feature is incrementally added to the orig-
inal de-rained image X̂ , guided by relevance maps. During
the compensation stage, the CSFI module is employed in con-
junction with the residual block to facilitate information shar-
ing across all feature levels. The level-1 feature, character-
ized by its relatively precise information and intricate details,
is compensated to the image first. Conversely, the level-3 fea-
ture, which encapsulates more abstract information, is com-
pensated to the image last. This systematic process results in
a projection from the feature space to the image space, gener-
ating the final output X̂out

c .



Table 1. Quantitative evaluation on the three datasets: BDD100K-Rain, synthesized using SyRaGAN [22] and BDD100K [25],
Cityscapes-Rain [21], and KITTI-Rain [21]. Experiments include a prior-based model, GMM [6], a CNN-based model,
PReNet [12], and a transformer-based model, Uformer [20], and their improvement using our module highlighted in blue.

Methods BDD100K-Rain KITTI-Rain Cityscapes-Rain

Name PSNR SSIM PSNR SSIM PSNR SSIM

GMM [6] 28.37 0.8590 17.08 0.4818 23.333 0.7830
PReNet [12] 33.38 0.9474 22.71 0.7497 23.80 0.9529

Uformer [20] 36.30 0.9619 31.59 0.9694 23.98 0.9509

GMM + Ours 31.44+3.07 0.9003+0.0412 25.23+8.15 0.7933+0.3114 23.48+0.14 0.8869+0.1039

PReNet + Ours 33.72+0.34 0.9487+0.0013 26.92+4.21 0.8551+0.1054 24.98+1.18 0.9595+0.0066

Uformer + Ours 36.37+0.07 0.9627+0.0008 33.05+1.46 0.9761+0.0067 25.64+1.66 0.9601+0.0091

3.4. Loss

During the training phase, our approach consists of initial-
ization and fine-tuning stages. In the initialization stage, the
model is trained to transfer useful features from clean ob-
ject images using an L1 loss function. The model learns the
transformation from a derained to a clean image in this stage,
ensuring the model has the capability to perform deraining
on simple rainy images. In the fine-tuning stage, the model
is further trained to transfer useful features from reference
clean images to better simulate real-world application scenar-
ios. For the independent objectives of these two stages, we
employ the loss functions tailored to each stage’s specific re-
quirements. During the initialization stage, the loss function
is defined as the ℓ1 reconstruction loss:

L(X̂out
c , Xc) = ∥X̂out

c −Xc∥1. (3)

In the fine-tuning stage, we apply the MS-SSIM-L1-Loss [26]:

L(X̂out
c , Xc) = α1∥X̂out

c −Xc∥1+α2(1−SSIM(X̂out
c , Xc)),

(4)
where α1 and α2 are the hyperparameters to control the effect
of each loss.

4. VALIDATION

4.1. Experiment setup

In our framework, we use existing de-raining models as
baselines. We adopted three baseline models, including the
prior-based (GMM [6]), CNN-based (PReNet [12]), and
transformer-based (Uformer [20]) models. Except for the
prior-based method that does not require training, we used
public codes for training each baseline on each dataset.

For the dataset, we require both a clean/rainy image pair
and a reference clean/rainy image pair that contain sim-
ilar scenes. However, existing rain benchmarks, such as
Rain100L [27] and DID [28], have limited similar scenes,
providing unreasonable reference images. Therefore, we
constructed the dataset as follows:

• BDD100K-Rain: We used BDD100K [25], a large-scale
driving scene dataset, and synthesized the rain streaks by
using SyRaGAN [22] and obtained 256× 256 images.

• Cityscapes-Rain/KITTI-Rain: This dataset includes
256 × 1024 images and constructed by [21], which
renders rain streaks to evaluate bad weather.

For image retrieval, we implemented the reference image
retrieval method at the image hash level. First, all images in
the dataset are projected into the image perceptual hash space.
Then, for every image that requires compensation, the nearest
neighbor image is selected as the reference image.

We utilized 8 A100 GPUs and PyTorch for our experi-
ments. The channel numbers for levels 1, 2, and 3 are set to
64, 128, and 256, respectively. The convolution blocks in the
feature extractor module are initialized with VGG-19 [29].
At the feature attention stage, the patch sizes for levels 1, 2,
and 3 are set to 12, 6, and 3, respectively. Within the feature
fusion module, the features for levels 1, 2, and 3 are config-
ured as (64, H,W ), (128, H/2,W/2), and (256, H/4,W/4),
respectively. To ensure that our model can capture useful
features and compensate accurately, we initially employ the
input clean image Xc as the reference image for initializa-
tion training using the loss functions in (3). The initialization
training is done for each model on each dataset. After the ini-
tialization training stage, Xc is replaced with the actual ref-
erence image in the subsequent training stage for fine-tuning.
In the fine-tuning stage, we set α1 = 0.6 and α2 = 0.4 and
use the loss function in (4).

4.2. Discussion

Table 1 presents the quantitative results of the baselines and
the improvements achieved using our method. Although
each baseline employs a different methodology for image de-
raining, our method can universally enhance the performance
of these baseline models. This suggests that our reference-
guided de-raining filter effectively extracts useful features
from reference images. The improvement is most significant
on the KITTI-Rain dataset, as this dataset provides better



Table 2. Effect of reference images. PReNet [12] trained on
BDD100K-Rain [25, 22] is used as a backbone while chang-
ing the reference images to the ground truth clean image,
Gaussian noise image, and our reference image obtained by
image retrieval.

Reference Type PSNR SSIM
Ground truth 35.50+2.06 0.9736+0.0257

Noise image 33.37−0.07 0.9470−0.0009

Reference image 33.78+0.34 0.9491+0.0013

Reference Attention map De-raining output

Fig. 5. Effect of reference images on the attention maps and
de-raining results. De-raining images are obtained by using
(from top to bottom) the ground-truth clean image, Gaussian
noise, and our reference image obtained by image retrieval.

reference images. Our pipeline also demonstrates various
degrees of compensation effects on different baselines. For
Uformer [20], which achieves the best results among the three
baseline models, our method shows relatively small improve-
ments. On the other hand, for GMM [6], which is the earliest
method among the three baseline models, our method shows
more substantial improvements.

We further evaluate the effect of reference images on the
BDD100K-Rain dataset, specifically to analyze how a refer-
ence image can contribute to the de-raining process. Using
PReNet as a baseline model, we analyze the effect of refer-
ence images using three different image types: ground truth
clean images, Gaussian-noise images, and our reference im-
ages collected using image retrieval. As shown in Table 2,
ground truth images, which encapsulate all the useful infor-
mation, yield the best results and significantly enhance the
performance. Noise images, that include less relevant infor-
mation, produce the worst outcomes. Reference images con-
taining similar scenes provide results that fall between the up-
per bound set by the ground truth images and the lower bound
established by the noise images. The results indicate that our
model can transfer useful features from reference images, and
the degree of enhancement primarily depends on the quality
of the reference images.

5. CONCLUSION

This paper introduces a novel framework for image de-raining
that leverages a reference-guided de-raining filter, a trans-
former network that enhances existing de-raining results us-
ing a reference clean image as guidance. Our framework, as
plug-and-play de-raining enhancement, shows performance
improvements of prior, CNN, and transformer-based models
across multiple datasets. As future work, we will integrate our
method with text-to-image generation models that can syn-
thesize clean images and use these images as references for
de-raining.

6. REFERENCES

[1] H. Huang, A. Yu, and R. He, “Memory oriented transfer
learning for semi-supervised image deraining,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021.

[2] Q. Guo, J. Sun, F. Juefei-Xu, L. Ma, X. Xie, W. Feng,
Y. Liu, and J. Zhao, “Efficientderain: Learning pixel-
wise dilation filtering for high-efficiency single-image
deraining,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

[3] M. Li, X. Cao, Q. Zhao, L. Zhang, and D. Meng, “On-
line rain/snow removal from surveillance videos,” IEEE
Transactions on Image Processing, vol. 30, pp. 2029–
2044, 2021.

[4] S. Li, W. Ren, F. Wang, I. B. Araujo, E. K. Tokuda,
R. H. Junior, R. M. Cesar-Jr, Z. Wang, and X. Cao, “A
comprehensive benchmark analysis of single image de-
raining: Current challenges and future perspectives,” In-
ternational Journal of Computer Vision, vol. 129, no. 4,
pp. 1301–1322, 2021.

[5] L. Kang, C. Lin, and Y. Fu, “Automatic single-image-
based rain streaks removal via image decomposition,”
IEEE Transactions on Image Processing, vol. 21, no. 4,
pp. 1742–1755, 2011.

[6] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Rain
streak removal using layer priors,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[7] J. Cho, S. Kim, and K. Sohn, “Memory-guided image
de-raining using time-lapse data,” IEEE Transactions
on Image Processing, vol. 31, pp. 4090–4103, 2022.

[8] R. Li, R. T. Tan, and L. Cheong, “All in one bad weather
removal using architectural search,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.



[9] H. Wang, Y. Wu, Q. Xie, Q. Zhao, Y. Liang, S. Zhang,
and D. Meng, “Structural residual learning for single
image rain removal,” Knowledge-Based Systems, vol.
213, pp. 106595, 2021.

[10] W. Yang, R. T. Tan, J. Feng, Z. Guo, S. Yan, and J. Liu,
“Joint rain detection and removal from a single image
with contextualized deep networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 42,
no. 6, pp. 1377–1393, 2020.

[11] X. Fu, B. Liang, Y. Huang, X. Ding, and J. Paisley,
“Lightweight pyramid networks for image deraining,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 6, pp. 1794–1807, 2020.

[12] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Pro-
gressive image deraining networks: A better and simpler
baseline,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[13] J. Cho, S. Kim, D. Min, and K. Sohn, “Single image
deraining using time-lapse data,” IEEE Transactions on
Image Processing, vol. 29, pp. 7274–7289, 2020.

[14] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and
R. Timofte, “Swinir: Image restoration using swin
transformer,” in Proceedings of the IEEE/CVF inter-
national Conference on Computer Vision, 2021.

[15] G. Li, X. He, W. Zhang, H. Chang, L. Dong, and
L. Lin, “Non-locally enhanced encoder-decoder net-
work for single image de-raining,” in Proceedings of
the 26th ACM international Conference on Multimedia,
2018.

[16] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu,
S. Ma, C. Xu, C. Xu, and W. Gao, “Pre-trained image
processing transformer,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2021.

[17] Y. Liang, S. Anwar, and Y. Liu, “Drt: A lightweight
single image deraining recursive transformer,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2022.

[18] Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool,
“Localvit: Bringing locality to vision transformers,”
arXiv preprint arXiv:2104.05707, 2021.

[19] X. Chen, H. Li, M. Li, and J. Pan, “Learning a sparse
transformer network for effective image deraining,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, June 2023.

[20] Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li,
“Uformer: A general u-shaped transformer for image

restoration,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2022.

[21] M. Tremblay, S. S. Halder, R. de Charette, and
J. Lalonde, “Rain rendering for evaluating and improv-
ing robustness to bad weather,” International Journal of
Computer Vision, vol. 129, no. 2, pp. 341–360, 2021.

[22] J. Choi, D. H. Kim, S. Lee, S. H. Lee, and B. C.
Song, “Synthesized rain images for deraining algo-
rithms,” Neurocomputing, vol. 492, pp. 421–439, 2022.

[23] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo,
“Learning texture transformer network for image super-
resolution,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[24] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu,
Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution
representations for labeling pixels and regions,” arXiv
preprint arXiv:2005.09228, 2020.

[25] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu,
V. Madhavan, and T. Darrell, “Bdd100k: A diverse driv-
ing dataset for heterogeneous multitask learning,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2020.

[26] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss func-
tions for image restoration with neural networks,” IEEE
Transactions on Computational Imaging, vol. 3, no. 1,
pp. 47–57, 2017.

[27] K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo,
J. Ma, and J. Jiang, “Multi-scale progressive fusion net-
work for single image deraining,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[28] H. Zhang and V. M. Patel, “Density-aware single im-
age de-raining using a multi-stream dense network,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

[29] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
Proceedings of the International Conference on Learn-
ing Representations, 2015.


	 Introduction
	 Problem Formulation
	 Method
	 Feature extractor
	 Feature attention
	 Feature fusion
	 Loss

	 Validation
	 Experiment setup
	 Discussion

	 Conclusion
	 References

